**REC N-Peak Technology: How REC uses award-winning technology on an n-type mono platform to provide long term power for lasting performance**

The REC N-Peak Series is a brand new solar module from the leading European manufacturer that builds on award-winning technology enablers and features an innovative module design with high power output. Using a n-type monosilicon platform for the first time in REC’s mass production, the REC N-Peak Series is available in watt classes of up to 330 Wp and offers customers a product that marries high power levels with the highest product quality in the market.

### What is the REC N-Peak?

The REC N-Peak Series is a new solar module that builds on REC’s multiple award-winning technology enablers and features innovative, high efficiency cell technology for the highest power output. Based on n-type monocrystalline (mono) silicon cells, the 60-cell REC N-Peak Series achieves watt classes of up to 330 Wp.

The first major characteristic of the REC N-Peak Series that sets it apart from other REC products is the cell type, where REC has moved into n-type monocrystalline cell production for the first time. The N-Peak is based on standard sized mono wafers (156.75 x 156.75 mm) that have been cut into two equally sized pieces (156.75 x 78.375 mm) through our half-cut technology, to give 120 separate cells in total.

![Cross-section of an REC N-Peak cell showing negatively charged bulk and PERT layer](image)

These 120 cells are then split into two halves of 60 cells, each with three 20 cell strings and the two halves then connected in parallel. This layout is then supplemented by a collection of other enablers:

- Five bus bars
- PERT (Passivated Emitter Rear Cell Totally Diffused)
- A split junction box

The REC N-Peak also features a new generation of frame design which offers a thinner frame height, but with with support bars on the rear to ensure durability, stability and increased load bearing capability.

### What makes a mono cell different to a multi cell?

As the name suggests, multisilicon (multi) ingots are formed from multiple separate crystals, whereas monosilicon is grown from a single one. This means that, once sliced into wafers, mono has a higher level of silicon purity, giving it a higher absorption efficiency, no visible cell structure and a uniformly dark color. These differences have a decisive effect on cell performance, giving a lower cell temperature coefficient, which improves energy yield, especially in warmer weather.

The manufacturing process of a mono wafer differs from that used for multi and it is this that creates the distinctive rounded corners seen on a mono cell. The reason for this is that mono wafers are grown in cylindrical ingots, rather than square or rectangular crucibles, before being sliced and cut to make best use of the space available in the module.

### What is n-type technology and what benefits does it offer?

REC modules have to date been based on p-type multi wafer technology. The market however, demands ever higher power and higher efficiency modules and the move to a mono wafer platform allows REC to address this demand. The P in p-type stands for positive where the cell bulk is doped with boron, which has one less electron than silicon creating a positive electron imbalance and stimulating the flow of electricity.

N-type on the other hand, sees the cell bulk doped with phosphorus, which has one more electron than silicon, creating a negative charge and stimulating the flow of electricity. As mono cells are generally more efficient than their multi counterparts, n-type technology has so far been used exclusively on mono to make best use of its high efficiency properties and reach even higher watt classes.

More importantly however, such a construction avoids the coming together of boron and oxygen in the bulk. This combination is the main cause of light induced degradation (LID) in the cell, and the non-occurrence of this in n-type cells means they are free from any permanent loss of power upon first exposure to sunlight.

### What has REC put in place to achieve mono n-type production?

As the name suggests, multisilicon (multi) ingots are formed from multiple separate crystals, whereas monosilicon is grown from a single one. This means that, once sliced into wafers, mono has a higher level of silicon purity, giving it a higher absorption efficiency, no visible cell structure and a uniformly dark color. These differences have a decisive effect on cell performance, giving a lower cell temperature coefficient, which improves energy yield, especially in warmer weather.

The manufacturing process of a mono wafer differs from that used for multi and it is this that creates the distinctive rounded corners seen on a mono cell. The reason for this is that mono wafers are grown in cylindrical ingots, rather than square or rectangular crucibles, before being sliced and cut to make best use of the space available in the module.

### Market studies have shown that high power n-type products are expected to grow to around 25% of capacity over the next decade and this is why REC has taken the step to leapfrog p-type mono technology and provide n-type solutions. It is however, important to note that multi technology is still expected to remain at around 50% of the market up until the mid 2020s and therefore remain a major industry section.1

---

What advantages do half-cut cells offer?
As can be seen in fig. 3, the mono cells of the REC N-Peak are cut into two equal rectangular pieces. Halving the cell reduces internal current by 50%, which cuts resistance and therefore also power loss. As power loss is proportional to the square of the current, the power loss in the complete module is reduced by a factor of four.

Reducing power loss in a half-cut cell produces a higher fill factor - an indicator of cell quality. Modules with a higher fill factor have a lower series resistance meaning reduced loss of current internally in the cell. In turn, this produces higher cell efficiency giving higher energy yields, especially at times of high irradiance.

What benefits do five bus bars bring to the product?
Five bus bars on a cell decreases the distance that electrons travel to reach the ribbon, decreasing internal stress as there is less congestion along the electron’s path, improving flow and reliability of the module. With this, resistance in the cell is lowered, so cell current increases.

Stringent accelerated testing has been carried out on N-Peak cells which have demonstrated a major improvement in the thermal cycling performance with five bus bars, meaning that thanks to the improved electron flow, the cells are less stressed by heat and therefore more efficient and durable.

What are the advantages of PERT technology?
In 2015, REC was the first module manufacturer to introduce Passivated Emitter Rear Cell technology (PERC) to mass production on multisilicon cells. PERC is fundamentally an additional layer at the rear of the cell with many tiny holes punched into it to allow an electrical connection between the bulk and the back side. This reduces electron recombination and also reflects certain wavelengths back through the cell to give a second chance at being captured. Equally, the reduction in metalization on the rear side of the cell enhanced the operating temperature of the cell, keeping it lower for higher efficiency.

Using its vast experience and know-how in the use of rear-side cell passivation with PERC, REC was able to develop this technology for n-type mono cells, where the rear of the cell is now totally diffused, i.e., it has no tiny holes. This passivation layer is known as Passivated Emitter Rear Cell Totally Diffused (PERT) and acts like a barrier layer across the complete area of the cell, separating the two negatively charged layers, contributing to the module’s higher overall energy yield.

The use of a three-part split junction box is key to enabling the ‘twin’ section cell layout seen in REC N-Peak Series modules. Splitting the junction box into smaller parts uses less metallization, again reducing resistance in the module and saving space. In turn, this then allows a slightly larger gap between cells increasing the internal reflection of light that does not land directly on a cell and therefore the likelihood that it is captured and can contribute to energy generation.

With three smaller boxes used, there is a reduction of between 15 and 20°C in heat build up compared to a standard module. This keeps the cells cooler, increasing cell absorption efficiency, module reliability and overall output.

The use of the split junction box on the rear (fig. 4) is also the key factor which enables the module to be split into two ‘twin cell sections’ of 60 half-cut cells connected in parallel (fig. 1). With this layout design, the module can continue to produce energy, even when one part of the module, or the string, is shaded. What this means, is that rather than the shading causing a bypass diode to be activated and a cell string the complete length of the module being circumvented, bringing the complete string capacity down with it, instead only half the length of a module is bypassed, enabling at least 50% of the module to continue contributing to the module’s higher overall energy yield.

What advantages does REC’s new frame design offer?
Although thinner in height at only 30 mm, the new frame structure of the REC N-Peak Series in fact offers more strength and robustness than standard products. A three year development project enabled the use of two support bars on the rear for the first time on a 60-cell module, increasing its load-bearing strength dramatically.

The two support bars across the rear prevent the glass and laminate from bending as far as it would otherwise under heavy load. The reduced deflection means the cells are less susceptible to damage, increasing their durability and long-term reliability as the chance of breakage and deformation is greatly reduced. Testing has shown that the support bars truly limit module deflection and deformation, with less than 1% degradation after mechanical load testing. Indeed, the support bars add so much extra strength that the module can even withstand downward loads of up to 6000 Pa.

Conclusion:
The use of mono n-type technology in the REC N-Peak Series pushes module power, efficiency, and watt classes, ever higher. With their higher purity levels, mono cells are more efficient at turning sunlight into energy with the subsequent addition of n-type technology boosting cell efficiency even more. An improved temperature performance due to PERT helps protects the cells from overheating helping achieve even higher efficiency and with no boron present in the cell bulk, there is no occurrence of LID; the benefit for customers being no immediate power drop upon first exposure to sunlight. The result of all of this is higher energy yield for customers.

However, the initial power level of a solar module is not the only critical feature, but also the performance over its entire lifetime. It is here that the REC N-Peak Series excels the new frame design provides additional robustness, affording increased protection to the high performance cells over a longer period of time.

With cell level technology enabling increased energy generation and the stronger frame design ensuring that power is preserved over decades, the REC N-Peak Series is supported by a warranty of maximum 2% degradation in year one and 0.5% degradation in years 2-25, leading to a final value of 86% after 25 years, making it the ideal solar module for high energy generation over its entire working lifetime.

---

2 Power loss = R x I², where R is the resistance and I is the current